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Abstract: - The Gaussian mixture probability hypothesis density (GM-PHD) smoother proposed recently can 
yield better state estimates than the GM-PHD filter. However, there are two major problems with it. First, the 
smoothed PHD distribution can not provide a more accurate target number estimate due to the target number 
estimation bias becoming larger by smoothing. Second, the computational complexity of computing the 
smoothed PHD distribution increases with the cardinality of measurement set, which can be very 
time-consuming when the clutter rate is high. To solve these problems an improved GM-PHD smoother is 
proposed that improves the target number estimation performance by using the estimated target number of 
forward GM-PHD filter and reduces the computational cost of GM-PHD smoother by the rectangular gating 
method. Simulated results show that the improved GM-PHD smoother is superior to the GM-PHD smoother in 
both the aspects of target number estimate and computational cost, so this improved GM-PHD smoother will 
have an applicable potential in related fields. 
 
Key-Words: - Gaussian Mixture, Probability Hypothesis Density, Filtering, Smoothing, Target Tracking, 
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1 Introduction 
Multi-target tracking (MTT) is an important 
research issue with wide applications in both 
civilian and military fields, such as passive radar 
tracking, terrain vehicle tracking, sonar image 
tracking, multi-target visual tracking, etc. The 
purpose of MTT is to jointly estimate the number of 
targets and their states from a sequence of 
observation sets in the presence of clutter, data 
association uncertainty, detection uncertainty and 
noise. The classical methods to the MTT problem 
requires data association that operates in 
conjunction with filtering [1-3], such as nearest 
neighbor (NN) [4], joint probabilistic data 
association (JPDA) [5], probabilistic data 
association (PDA) [6], and multiple hypothesis 
tracking (MHT) [7], etc. The data association 
problem in the classical MTT algorithms results in a 
huge computational load due to its combinatorial 
nature, so MTT still remains challenges in theory 
and application. 

In recent years, the random finite set (RFS) 
theory [8] has been used by more and more 
researchers to tackle with the MTT problem. The 
probability hypothesis density (PHD) multi-target 
filter [9] that propagates the posterior intensity 
function of the RFS of targets in time avoids the 
combinatorial problem that arises from data 

association and has attracted considerable interest. 
The PHD filter is a suboptimal but computationally 
tractable alternative to the multi-target Bayes filter 
in RFS framework, it still requires solving multiple 
integrals that have no closed-form solutions in 
general. Sequential Monte Carlo implementation of 
the PHD (SMC-PHD) filter has paved the way for 
its application to realistic nonlinear non-Gaussian 
filtering problems [10, 11]. Besides, a closed-form 
solution to the PHD recursion has also been derived 
for linear target dynamic and measurement models, 
called the Gaussian mixture PHD (GM-PHD), 
which estimates the PHD distribution as a mixture 
of Gaussian densities [12, 13]. Afterward, many 
extensions have been developed to solve different 
MTT problems [14-17]. 

To improve the capability of PHD-based filters, a 
forward-backward PHD smoother has been 
proposed recently. Similar to the PHD filter, there 
are two major implementation methods of the 
forward-backward PHD smoother known as the 
SMC-PHD smoother [18, 19], and the Gaussian 
mixture PHD (GM-PHD) smoother [20, 21]. The 
GM-PHD smoother involves a forward multi-target 
filtering using the standard GM-PHD filter recursion 
and then a backward smoothing recursion. The 
backward smoothing recursion is the key step of the 
forward-backward GM-PHD smoother. In the 
backward smoothing step, the backward corrector, 
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which involves the innovation from forward 
filtering using measurements beyond the current 
time, is used to adjust the filtered PHD distribution 
at current time step. 

The target number of GM-PHD smoother is 
estimated by rounding the volume of the smoothed 
intensity function to the nearest integer, and the 
target state estimates are generated from the 
smoothed intensity function by extracting the means 
from the smoothed Gaussian components with 
weights greater than some threshold [21]. Compared 
with the GM-PHD filter, GM-PHD smoother 
provides more accurate target state estimates by the 
smoothed intensity function. However, there are two 
issues present in GM-PHD smoother. First, the 
GM-PHD smoother is, to some extent, of 
approximation, the target number estimation bias 
resulted from the forward filtering can not be 
reduced in the backward smoothing step. Instead, it 
will become larger with smoothing lag growing. 
Hence, the target number estimated by summing up 
the appropriate weights of the Gaussian components 
in the smoothed PHD is unreliable. Another key 
issue to the GM-PHD smoother is the computational 
complexity of computing the smoothed PHD 
distribution increasing with the cardinality of the 
measurement set. This can be very time-consuming 
especially when the clutter rate is high which has 
become one of the biggest challenges of the 
GM-PHD smoother. 

In order to address the aforementioned problems 
in GM-PHD smoother, an improved GM-PHD 
smoother is proposed in this paper. As explained 
above, we can see that the computational cost of 
GM-PHD smoother can be reduced by means of 
reducing the cardinality of measurement set. At each 
backward smoothing step, based on the forward 
filtering results and by using the rectangular gating 
technique, the new measurement set is constructed 
to compute the smoothed PHD distribution. The 
rectangular gating may remove all measurements 
not associated with targets in the measurement set. 
Thus unnecessary computation can be avoided and 
the overall processing speed is effectively enhanced. 
In addition, since the smoothed PHD intensity can 
not provide a more accurate target number estimate 
for GM-PHD smoother, thus the target number of 
the improved GM-PHD smoother estimated by 
summing up the appropriate weights of the filtered 
Gaussian components is a better choice. The 
numerical simulation indicates that the 
computational cost is reduced and that the target 
number estimation performance is improved. 

The rest of this paper is organized as follows. In 
Section 2 a brief background of RFS-based MTT is 

provided. In addition, the forward-backward PHD 
smoother is reviewed and the GM-PHD smoother is 
presented. The proposed algorithm is elaborated in 
Section 3. In Section 4, the simulated results are 
given and discussed. Finally, some meaningful 
conclusions are drawn in Section 5. 
 
 
2 Background 
2.1 Multi-target Tracking 
In MTT problems, assume that at time step k, there 
are kn  target states kn

kk xx ,,1
  in a state space χ  

and km  measurements km
kk zz ,,1

  received in an 
observation space Z . Since there is no sequential 
order on the respective collections of target states 
and measurements, they can be naturally 
represented as finite sets, i.e. 

χ∈= },,{ 1 kn
kkk xxX                        (1) 

ZzzZ km
kkk ∈= },,{ 1

                       (2) 
where kX  and kZ  are the target state and 
measurement sets with kn  targets and km  
measurements, respectively. Some measurements in 

kZ  may be due to clutter, the number of clutter 
points is assumed to be Poisson distributed. 

Denote the multi-target posterior density function 
as )( 1:1111 −−−− kkkk ZXp , then, the prediction and 
update equations for the optimal multi-target Bayes 
filter are described by 
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where the parameter sµ  takes the place of the 
Lebesgue measure [11], 1−kkp  denotes the 

predicted multi-target density, 1−kkf  and kg  are 
the multi-target transition density function and the 
multi-target likelihood function, respectively. 
 
 
2.2 PHD Smoother 
PHD smoother involves a forward multi-target 
filtering recursion using the standard PHD filter and 
then a backward smoothing recursion [18]. The 
PHD filter can be derived from the optimal 
multi-target Bayes filter using finite set statistics. 
Let 11 −− kkv  denote the filtered PHD at time step 
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1−k , the PHD filter involves a prediction step and 
an update step that propagate the intensity function 

)(11 xv kk −−  recursively in time, i.e. 
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where 1−kkf  is the single-target transition density; 

⋅⋅,  denotes inner product, i.e., the operation of 
multiple integrals; 1−kkγ  denotes the PHD of 

spontaneously target birth; 1, −kkSp  and kDp ,  are 
the survival probability and detection probability, 
respectively; kκ  denotes the intensity function of 
the clutter RFS, 1+kg is the single-target 
measurement likelihood. 

In the backward smoothing step, the smoothed 
PHD is propagated backward via the backward 
smoothing recursion [21], i.e. 

)()()( xBxvxv ktttkt =                       (8) 

where )(xB kt  is the backward corrector, it can be 
recursively computed as follows 

)(),;(

1)(
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Note that the backward corrector starts with 
1)( =xB kk . 

 
 
2.3 GM-PHD Smoother 
The GM-PHD smoother is a closed-form smoothing 
solution to the forward-backward PHD smoother for 
the linear Gaussian model. Under linear Gaussian 
multi-target assumptions, each target follows a 
linear Gaussian dynamic model and linear Gaussian 
measurement model, i.e. 

( )111 ,;)( −−− = kkkk QFxNxf ζζ               (10) 

( )kkk RxHzNxzg ,;)( =                    (11) 
where ( )PmxN ,;  denotes a Gaussian density with 
mean m  and covariance P . The parameter 1−kF  
is the state transition matrix, 1−kQ  is the process 
noise covariance; kH  is the observation matrix 
and kR  is the observation noise covariance. 

If the PHD at time step 1−k  is a Gaussian 
mixture, then the predicted and filtered PHD at time 
step k  are expressed as a Gaussian mixture of the 
form 
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Suppose that the backward corrector at time step 
1+t  from time step k  is given by 
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Then according to Eq. (9), the generic backward 
corrector recursion at time step t  from time step 
k  is given by 

∑
+∈ ++

+

+

+

′′

+′−+−=

1 )()(

);(

)()1(1)(

11

1

1

kZz tDt

kt
DS

ktDSSkt

zrpz

zxB
pp

xBpppxB

κ

       (15) 

where )(1 zrt+ , )(1 xB kt+′  and );(1 zxB kt+′′  are 
given, respectively, by 
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According to Eqs. (8), (13) and (14), the 
smoothed PHD at time step 1+t  from time step 
k  is a Gaussian mixture and is given by 
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Then, the target state estimates of GM-PHD 
smoother are extracted from the means of the 
smoothed Gaussian components with weights 
greater than some threshold, and the estimated target 
number at time step 1+t  can be written as 
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According to Eqs. (8), (13), (14) and (15), assume 
that the smoothing lag is l  time steps, then the 

GM-PHD smoother requires )1(
1

it

l

i
tt ZJ +
=
∏ +  

Gaussian components to represent )(xv klk − .  
Hence, the computational complexity of 

computing the smoothed PHD with a lag of l  time 

steps is ))1((
1

it

l

i
ZO +

=
∏ + , this implies that the 

computational complexity of GM-PHD smoother 
can be reduced by means of reducing the cardinality 
of measurement set.  
 
 
3 Improved GM-PHD Smoother 
In this section, based on the GM-PHD smoother, an 
improved GM-PHD smoother is proposed to 
improve the smoothing performance of GM-PHD 
smoother, in which the rectangular gating method is 
used to reduce the cardinality of measurement set. 
We summarize the proposed algorithm as follows. 
 
 
3.1 Forward Filtering 
Initialization step: At time step 0=k , initialize 
the algorithm with the weighted sum of 0J  
Gaussian components to approximate the initial 
PHD distribution, i.e. 
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Prediction step: Predict existing Gaussian 
components with the Kalman filter, and we obtain 
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Assume that at time step k , the intensity of the 
birth is 
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Then, the predicted intensity )(1 xv kk −  at time 

step k  can be written as 
)()()( 1,1 xxvxv kkkSkk γ+= −−                (30) 

Updating step: Update the filtered PHD intensity 
)(xv kk  via Eq. (6) by the measurement set 

},,,{ 21 km
kkkk zzzZ =  received at time step k . 

Pruning and merging: The Gaussian 
components are pruned by removing the Gaussian 
components with negligible weights, and the 
Gaussian components within a certain distance from 
each other are also merged into one. 

State extraction: Target state estimates of the 
improved GM-PHD smoother are extracted from the 
means of filtered Gaussian components with 
weights greater than 0.5, then the target state 
estimate set of the forward GM-PHD filter is 
expressed as },,{ˆ ˆ1 kN

kkkkkk mmX = . 

Target number estimation: By using the filtered 
PHD intensity at time step k , the estimated number 
of targets can be obtained by summing up the 
appropriate weights, i.e. 

∑
=

=
kkJ

i

i
kkkk wroundN

1

)( )(ˆ                     (31) 

 
 
3.2 Construction of New Measurement Set 
Suppose that at time step k , the measurement set 
received is },,,{ 21 km

kkkk zzzZ = , and the true target 
state set is },,,{ 21 kn

kkkk xxxX = . Based on the 
observation measurement model, for each kk Xx ∈ , 
since one target can only generate one measurement, 
the measurement generating from kx  is obtained 
by 

kkkk RxHz +=                           (32) 
In practice, the true target state set kX  is 

unknown, we can use the target state set kX̂  
estimated by forward GM-PHD filter to obtain the 
estimated measurements originating from true 
targets. Then the measurement estimation set can be 
expressed as follows 

}ˆ,ˆ{},{ˆ ˆ1ˆ1 kk N
kk

N
kkkkkkk zzmHmHZ  ==        (33) 

where i
kkk

i
k mHz =ˆ  is the measurement 

estimation associated with the ith target. 
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Given a threshold η , for the ith target, if 

k
i
k Zz ˆˆ ∈  and k

i
k Zz ∈  are its corresponding 

measurement estimation and true measurement, 
respectively, then the residual error )(~ jz i

k  should 
satisfy the conditions of 

η≤−= )()(ˆ)(~ jzjzjz i
k

i
k

i
k                  (34) 

where )(ˆ jzi
k  and )( jzi

k  are the jth component of 
i
kẑ  and i

kz , respectively. 
In order to remove the spurious measurements 

as much as possible, a threshold η  should be 
empirically set according to the actual situation, 
with a larger η  for a low clutter rate and a smaller 
η  for a high clutter rate. 

For clarity, we note the new measurement set as 
new
kZ . Clutter are spurious measurements that do not 

carry any useful information. Therefore, the new 
measurement set new

kZ  obtained by rectangular 
gating method is used to compute the smoothed 
PHD intensity without affecting the performance of 
the improved GM-PHD smoother. 
 
 
3.3 Backward Smoothing 
Smoothing step: According to the smoothing lag 

tkl −=  used in smoother, compute the smoothed 
PHD )(xv kt  with the new measurement sets 

liZ new
it ,,1, =+ . 

State extraction: target states are determined 
from the means of smoothed Gaussian components 
with weights greater than a specific threshold, note 
the smoothed target state estimate set as 

},,{ˆ ˆ1 ktN
ktktkt mmX = . 

Output results: At time step t , the target state 
estimate set and target number estimate of the 
improved GM-PHD smoother are 

},,{ˆ ˆ1 ktN
ktktkt mmX =  and ttkt NN ˆˆ =  separately. 

In the next section, we analyze the performance 
of the proposed algorithm compared with the 
GM-PHD smoother through different metrics using 
Monte Carlo simulations. 
 
 
4 Simulation Results 
To demonstrate the efficiency of our proposed 
improved GM-PHD smoother, we consider a 
two-dimensional scenario with an unknown and 
time varying number of targets observed in clutter. 

Each target has survival probability 99.0=Sp  and 
follows a linear Gaussian dynamic model. The 
target state vector T

kykykxkxk ppppx ],,,[ ,,,, =  is a 
vector of planar position and velocity at time k, and 
the measurement is a noisy version of the position. 
The sampling period is 1=∆ s. The simulation 
environment was as follows: AMD A8-6600K APU 
with Radeon HD(tm) Graphics 3.9 GHz, 4 GB 
DDR3 1600 Memory, Windows 7, and MATLAB 
R2012a. 

The linear Gaussian dynamic model is used as 
kkk qFxx Γ+=+1                          (35) 

where 
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The linear-Gaussian measurement model is 
described as 

111 +++ += kkk rHxz                         (36) 
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New targets can appear spontaneously according 
to a Poisson point process with intensity function 

( )∑
=

=
3

1

)()( ,;
i

ii
k PmxNw γγγγ                   (37) 

where 5,1])diag([5,1,)3()2()1( === γγγ PPP , and 
)(diag ⋅  denotes the diagonal matrix. 

Tm ]1.2,0,6.0,0[)1( =γ , Tm ]0,0,0,0[)2( =γ , 
Tm ]2,0,2,0[)3( =γ , 2.0=γw . 

In our simulation, targets can appear or disappear 
in the scene at any time. Each target is detected with 
probability 98.0=Dp , the maximum number of 
Gaussian components is 100max =J . The pruning 
and merging thresholds are 510−=pT  and 5=U , 
respectively. The clutter is modelled as a Poisson 
RFS with the uniform density in the surveillance 
region, and the clutter rate is 5=r . The smoothing 
lag used in this simulation is 2=l  time steps. The 
threshold in the improved GM-PHD smoother is 

3=η . 
To evaluate the performance of the proposed 

improved GM-PHD smoother, an appropriate metric, 
known as the optimal subpattern assignment (OSPA) 
distance [22] is employed as follows 
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where },,{ 1 mxxX =  and },,{ 1 nyyY =  are 
arbitrary finite subsets, ∞<≤ p1 , 0>c . In our 
simulation, the parameters are set to p=2 and 
c=50m. 

In addition, since the target number estimate 
depends on the weight sum of the Gaussian 
components, we measure the mean absolute error 
(MAE) of weight sum on the true number of targets 
for the improved GM-PHD smoother. The MAE is 
calculated as follows 

}{),( NSENSMAE ww −=                  (39) 
where wS  and N  are the weight sum and true 
target number, respectively. 
 

 
 
Fig.1. True tracks and measurements 
 

 
 
Fig.2. PHD weights of different targets in GM-PHD 
filter and GM-PHD smoother 

 
 
Fig.3. PHD weights of different targets in GM-PHD 
filter and improved GM-PHD smoother 
 

 
 
Fig.4. MAE for GM-PHD filter and improved 
GM-PHD smoother 
 

 
 
Fig.5. Target number estimations for GM-PHD 
smoother and improved GM-PHD smoother 
 

Fig.1 shows a simulated scenario with true target 
tracks and measurements for a duration of 60 time 
steps in the presence of the clutter, where the solid 
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lines and the plus signs denote the true target tracks 
and the measurements, respectively. 

The smoothed PHD weights of different targets in 
the GM-PHD smoother and improved GM-PHD 
smoother are shown in Fig.2 and Fig.3, respectively. 
As seen from Fig.2 and Fig.3, the cluttered 
measurements have little effect on the adjustment of 
the filtered PHD weights. A comparison shows that 
the smoothed weights become fluctuant and 
unreliable. 

Fig.4 illustrates the MAE for GM-PHD filter and 
improved GM-PHD smoother. It can be seen that 
the MAE becomes larger with the smoothing lag 
increasing, thus the target number estimated by 
summing up the appropriate weights of the 
smoothed Gaussian components is unreliable. Fig.5 
shows the target number estimates for different 
algorithms. As seen, the target number estimate of 
the forward GM-PHD filter used as that of the 
improved GM-PHD smoother is a more reasonable 
solution. 
 

 
 
Fig.6. OSPA distances for improved GM-PHD 
smoother 
 

 
 
Fig.7. Cardinality comparison to original 
measurement set and new measurement set 

 
 
Fig.8. Average running time for GM-PHD smoother 
and improved GM-PHD smoother 

 
Fig.6 shows the OSPA distances for the improved 

GM-PHD smoother with lags of 1 and 2 time steps. 
We can see that the performance of the proposed 
algorithm is improved over the GM-PHD filter. It 
can also be observed that the higher the lag we use 
for smoothing the better the state estimations we get, 
but improved performance is achieved at the cost of 
additional computational load. 

The cardinality of measurement set is reduced 
significantly, as shown in Fig.7. Thus the 
computational cost of the proposed improved 
GM-PHD smoother can be reduced more 
significantly. The average running time of one MC 
trial using clutter rates from 1 to 10 is presented in 
Fig.8. As seen, the computing loads of two 
algorithms are growing with the increase of the 
clutter rate. It is obvious that the proposed improved 
GM-PHD smoother can achieve a much faster 
computing speed comparing with the GM-PHD 
smoother. 
 
 
5 Conclusion 
Based on the analysis of the problems in the 
GM-PHD smoother, an improved GM-PHD 
smoother is proposed in this paper, which reduces 
the computational cost of the GM-PHD smoother by 
the rectangular gating technique and estimates the 
target number by summing up the appropriate 
weights of the filtered Gaussian components rather 
than those of the smoothed Gaussian components. 
Simulation results show that the improved GM-PHD 
smoother can achieve a much faster processing 
speed and provide a more accurate target number 
estimation as compared with the GM-PHD smoother. 
All these indicate that this proposed smoother has a 
good application prospect. 
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